

Slavko Vujević, **Dino Lovrić** and Tonći Modrić

University of Split,

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture,

Croatia

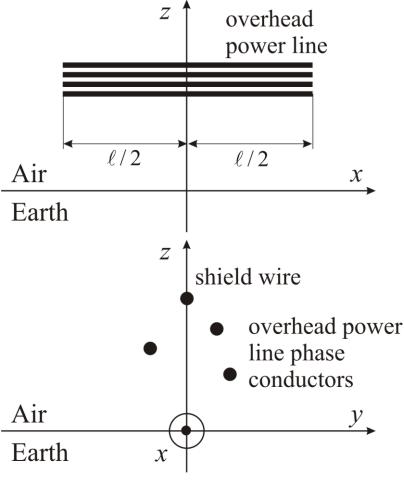
2D Computation and Measurement of Electric and Magnetic Fields of Overhead Electric Power Lines

Introduction

- ➤ the problem of computing the power frequency electromagnetic field can be considered as quasistatic → electric and magnetic field computed separately
- computation of electric and magnetic field accomplished using a 2D approximation of a power line
- short power line is considered, conductor charge density is approximated by a constant
- results will be compared to measurements underneath a 400 kV overhead power line

Mathematical model of overhead electric power line

- > 2D numerical algorithm → short conductors
 → conductor sag neglected
 > conductors positioned along *x*-axis
 > conductors treated as line sources parallel to earth surface
 - \succ thin-wire approximation
 - ➢ homogeneous earth
 - Field distribution will be computed along y-z plane in the middle of the section



Scalar electric and vector magnetic potentials

- solutions of Helmholtz differential equations reduce to solutions of Poisson
 differential equations (quasistatic approximation)
- \succ scalar electric potential for *n* conductors:

$$\overline{\varphi} = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \sum_{i=1}^n \left[\int_{\Gamma_{Ai}} \frac{\overline{\lambda}_i}{R_{Ai}} \cdot d\ell_{Ai} + \overline{F} \cdot \int_{\Gamma_{Bi}} \frac{\overline{\lambda}_i}{R_{Bi}} \cdot d\ell_{Bi} \right]$$

 \blacktriangleright vector magnetic potential for *n* conductors:

$$\underline{\vec{A}} = \vec{i} \cdot \frac{\mu_0}{4 \cdot \pi} \cdot \sum_{i=1}^n \bar{I}_i \cdot \int_{\Gamma_{Ai}} \frac{1}{R_{Ai}} \cdot d\ell_{Ai}$$

- > numerical algorithm is based on **Biot-Savart** law
- \triangleright conductor current \bar{I}_i flows along the axis and generates the magnetic field
- \triangleright components of magnetic flux density in *y*-*z* plane for x = 0:

$$\overline{B}_{x} = 0$$

$$\overline{B}_{y} = \mu_{0} \cdot \sum_{i=1}^{n} \frac{(z_{i} - z) \cdot \ell}{4 \cdot \pi \cdot d_{i}^{2} \cdot \sqrt{d_{i}^{2} + \frac{\ell^{2}}{4}}} \cdot \overline{I}_{i}$$

$$\overline{B}_{z} = \mu_{0} \cdot \sum_{i=1}^{n} \frac{(y - y_{i}) \cdot \ell}{4 \cdot \pi \cdot d_{i}^{2} \cdot \sqrt{d_{i}^{2} + \frac{\ell^{2}}{4}}} \cdot \overline{I}_{i}$$

$$\overline{B}_{z} = \mu_{0} \cdot \sum_{i=1}^{n} \frac{(y - y_{i}) \cdot \ell}{4 \cdot \pi \cdot d_{i}^{2} \cdot \sqrt{d_{i}^{2} + \frac{\ell^{2}}{4}}} \cdot \overline{I}_{i}$$

> conductor charge density $\overline{\lambda}_i$ approximated by a **constant** $\rightarrow \overline{\lambda}_i = \frac{Q_i}{\ell}$ > electric field intensity is computed from

$$\underline{\vec{E}} = -\nabla\overline{\varphi} - j \cdot \omega \cdot \underline{\vec{A}} = \left\{ \overline{E}_x, \overline{E}_y, \overline{E}_z \right\}$$

➤ the components of the electric field intensity are computed from:

$$\begin{split} \overline{E}_{x} &= \overline{E}_{x} \big|_{x=0} = -j \cdot \omega \cdot \overline{A}_{x} = -j \cdot \omega \cdot \overline{A} \big|_{x=0} & \text{rms value:} \\ \overline{E}_{y} &= \overline{E}_{y} \big|_{x=0} = -\frac{\partial \overline{\phi}(x, y, z)}{\partial y} \big|_{x=0} = -\frac{\partial \overline{\phi}(0, y, z)}{\partial y} & E = \sqrt{E_{x} + E_{y} + E_{z}} \\ \overline{E}_{z} &= \overline{E}_{z} \big|_{x=0} = -\frac{\partial \overline{\phi}(x, y, z)}{\partial z} \big|_{x=0} = -\frac{\partial \overline{\phi}(0, y, z)}{\partial z} \end{split}$$

 \blacktriangleright vector magnetic potential for x = 0 needed in:

$$\overline{E}_{x} = -j \cdot \omega \cdot \overline{A} \Big|_{x=0}$$

is computed from:
$$\overline{A} \Big|_{x=0} = \frac{\mu_{0}}{2 \cdot \pi} \cdot \sum_{i=1}^{n} \overline{I}_{i} \cdot \ell n \frac{\sqrt{d_{i}^{2} + \frac{\ell^{2}}{4}} + \frac{\ell}{2}}{d_{i}} - \frac{\frac{\Gamma_{Ai}}{2}}{-\frac{\ell}{2}} \frac{\Gamma_{Ai}}{x \, dx} \frac{\ell}{\frac{\ell}{2}} x$$

$$d_{i} = \sqrt{(y-y_{i})^{2} + (z-z_{i})^{2}} \qquad \qquad \int_{\Gamma_{Ai}} \frac{1}{R_{Ai}} \cdot d\ell_{Ai}$$

 \blacktriangleright scalar electric potential for x = 0 needed in equations

$$\overline{E}_{y} = -\frac{\partial \varphi(0, y, z)}{\partial y}$$
 $\overline{E}_{z} = -\frac{\partial \varphi(0, y, z)}{\partial z}$

can be obtained from:

$$\overline{\varphi}(0, y, z) = \frac{1}{2 \cdot \pi \cdot \varepsilon_0 \cdot \ell} \cdot \sum_{i=1}^n \left[\sinh^{-1} \left(\frac{\ell}{2 \cdot d_i} \right) + \overline{F} \cdot \sinh^{-1} \left(\frac{\ell}{2 \cdot D_i} \right) \right] \cdot \overline{Q}_i$$

 \succ phasors of the *i*th conductor charges are unknown

phasors of the *i*th conductor charges are computed using the point collocation method:

$$\sum_{i=1}^{n} \left[\overline{Z}(d_{ji}) + \overline{F} \cdot \overline{Z}(D_{ji}) \right] \cdot \overline{Q}_{i} = \overline{\Phi}_{j} \quad ; \quad j = 1, 2, ..., n$$
$$\overline{Z}(v) = \frac{1}{2 \cdot \pi \cdot \varepsilon_{0} \cdot \ell} \cdot \ell n \frac{\sqrt{\left(\frac{\ell}{2}\right)^{2} + v^{2}} + \frac{\ell}{2}}{v}$$

 \succ *v* is replaced by:

$$d_{ii} = r_{0i} \qquad d_{ij} = \sqrt{(y_i - y_j)^2 + (z_i - z_j)^2} \quad ; \quad i \neq j$$
$$D_{ii} = 2 \cdot z_i \qquad D_{ij} = \sqrt{(y_i - y_j)^2 + (z_i + z_j)^2} \quad ; \quad i \neq j$$

Input data of the overhead power line

- 6 phase conductors (AlFe 490/65) and 2 shield wires (Alumweld 19/9)
- ➢ 376 m long power line section

Z							
Shield wire 1	Shield wire 2						
	• L3 •						

У

	i	y (m)	z_{s} (m)	$\overline{\Phi}_i$ (kV)	\bar{I}_i (A)
L1	1	-10.7	12.58	234.4∠0°	228∠-4.2°
	2	-10.4	12.58	234.4∠0°	228∠-4.2°
L2	3	-0.15	12.58	234.4∠240°	228∠235.8°
	4	0.15	12.58	234.4∠240°	228∠235.8°
L3	5	10.4	12.58	234.4∠120°	228∠115.8°
	6	10.7	12.58	234.4∠120°	228∠115.8°
SW1	7	-7.44	19.09	0∠0°	0∠0°
SW2	8	7.44	19.09	0∠0°	0∠0°

Input data of the overhead power line

The sag of the conductors was taken into account by:

$$z_s = z - \frac{2}{3} \cdot s$$

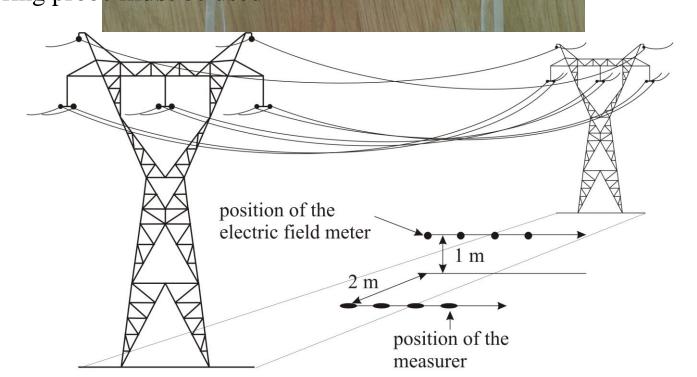
- measurements taken on a clear winter day (10 °C)
- terrain mostly clear except sporadic
 bushes
- measurements along y directed observation profile at z = 1 m

Other input data:

 $\varepsilon_r = 10$ $\sigma = 0.1 S / m$ f = 50 Hz

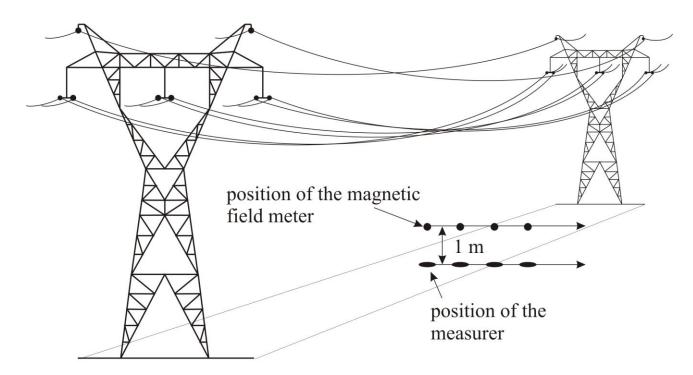
Measuring equipment and procedure

- electric field meter Monroe Electronics Model 238A-1
 AC Fieldmeter
- ➤ measurer has influence on electric field distribution → measuring probe must be used

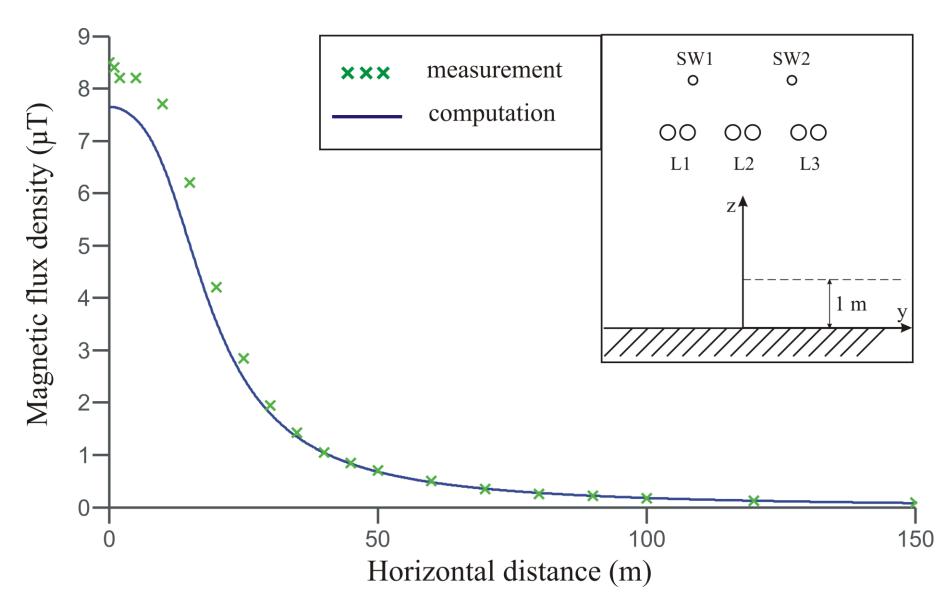


Measuring equipment and procedure

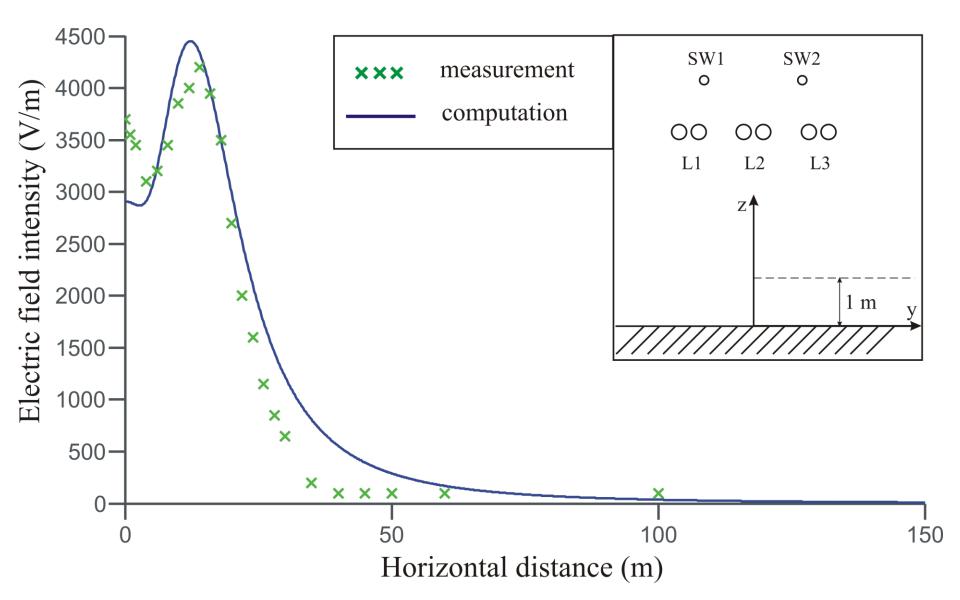
- magnetic field meter Sypris Triaxial ELF Magnetic Field Meter Model 4090
- measurer does not have influence on the magnetic field distribution



Comparison of results – magnetic field



Comparison of results – electric field



Summary

- 2D algorithms for computation of electric and magnetic fields of overhead power lines
- > good agreement was found between the computed results and measurements
- ➢ better results can be achieved by taking the sag into account (3D algorithm)
- more advanced models are needed for more complicated structures such as electric power substations

Thank you!